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A“OT&“HE—P&CCMHTPHB&GTC}I TeYeHHe KANEJIbLHOM »HUAKOCTH C nepeme}moﬂ BA3KOCTBIO B

MJIOCKOM M KOJIbLIEBOM KaHAJNaX, Yepes NMOBEPXHOCTH KOTOPHX BIPHICKUBAEGTCA WU OTCACH-

BaeTCH HHUIKOCTDb. Ho.nyqeﬂo peuieHne AMHAMHYeCcKON U TernJioBoH 3ajay anA clyyass, KOorga

Te4eHue 06yCJIOB.TIeHO HAJIN4YMEeM NPOJOJNBHOrO rpajeHTa JaBJAeHHA N ABHKEHHEM OJHOR U3
HOBerHOCTeﬁ KaHaJja.

NOMENCLATURE
a, thermal diffusivity;
A, constant;
C,, resistance coefficient ;
P, pressure ;
P, dimensionless pressure;
P, dimensionless pressure which causes
the flow to separate;;
Pe, Péclet number;
0, dimensionless blowing parameter ;
r, radial co-ordinate;
R, R,, internal and external cylinder radii,
respectively ;
T, temperature;
u,v, longitudinal and transverse velocity
components;
U, surface velocity;
X, ¥, cartesian co-ordinates;
n
Y, = QRe J o,
V*
0
1
Y., = QRe J %,
v#
0
h, distance between plates;
Re, Reynolds number.
Greek symbols
R
) R,

n, dimensionless transverse co-ordi-
nate;

v, kinematic viscosity;

vy, kinematic viscosity at the fixed sur-
face;

Voo dimensionless kinematic viscosity;

I, dimensionless  radial = pressure
gradient ;

0, fluid density.

1. INTRODUCTION

FLuip flows between two porous surfaces have
been the subject of a number of works [1, 2,
etc.] in which all physical properties of the fluid
were assumed constant.

In the present paper the solution of the
Navier-Stokes and energy equations is pre-
sented for two cases of liquid flow: between two
permeable plane parallel surfaces, and in an
annulus between two coaxial cylinders. The
fluid viscosity is assumed to depend on tempera-
ture. As to the other liquid properties (density,
thermal conductivity, etc.), they are assumed
constant because of their weak dependence on
temperature.

2. PLANE FLOW

We shall consider a liquid flow in a plane
channel of height h, formed by two permeable
surfaces. The flow is initiated by the motion of
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one surface with the constant velocity U and op
longitudinal pressure gradient. It is assumed dy =
that the liquid is injected {or sucked) through

the lower surface at a rate constant along the sur- dT d*T
face. The velocity components and temperature v ~d~y“ =a d_yZ"

are assumed to depend on the co-ordinate y only.

Then it follows from the continuity equation
that v = const. throughout, and the problem
is reduced to integration of the set of equations

with boundary conditions

u =, T=T, at y=0

ldp+_‘1v§i‘.) 1) P TEhR o wed
pdx dy\ dy The solution of the set of equations (1),
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{(a) Velocity distribution in a plane channel with different values of
pressure gradient.
LP=-5 ILP=0; IILP=+4+5
L. QRe= +14; 2 QRe=0; 3. QRe = ~14: 4 QRe=0;
T, = T, = 50°C.

(Curves 1, 2, 3 correspond to temperatures of plates T; = 50°C, T, = 80°C),

(b) Velocity distributions (solid lines) and temperature (dashed lines)
in plane channel with porous walls without {ongitudinal pressure
gradient. T, = 50°C in all cases.

[. QRe = +14; 1. QRe=0; UL QRe= —14.
1. T, =80°C: 2. T, =50°C; 3 T, =20C
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and (3) may be written in the following dimen-
sionless form

u_oxpym—1f P

jzexp(—y)dn — 1]} —g [exp y(n)
4]

j‘exr)(—y) dn — 1], ()
)]
T—-T, _1—exp(QPen)
T,— T, 1— exp(QPe)

(6)

Here the following notations are introduced :

1 dp [ fdn
P = W (‘ a) y(n) = |:JI ‘_;] ORe,

0

Uh Uh v

R = —— P = — = —,

¢ v’ *= Q U
Vs 4

n= ﬁa Ve = V_’ vy = V(Tl)-

1

The curves in Fig. 1 show velocity and tem-
perature distributions predicted by formulae
(5) and (6) for water flowing in a plane channel.
The relation between viscosity and temperature
was taken from the experimental data of
reference [3].

Comparison of velocity distributions cor-
responding to isothermal and non-isothermal
flows allows us to understand the effect of
viscosity change on the formation of a velocity
field. In a non-isothermal flow, separation at
one of the plates may occur in an adverse
longitudinal pressure gradient as in the case of an
isothermal flow. The condition of flow separa-
tion on the stationary plate which follows from
the equation du/dy|,_, = 0is of the form

1
Py = Q[exp y, gexp(—y) dp 117" (0

(P, is the dimensionless pressure gradient
which causes the flow to separate).
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It can be seen from Fig. 2(a), that separation
at the lower plate may occur at both injection
and suction of liquid. As to the effect of non-
uniformity of the temperature field, conclusion
may be made that the positive temperature
gradient dT/dy|,-, > 0 provokes separation.
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FIG. 2.

(a) Longitudinal pressure gradient P, which causes the
flow to separate.

flow between coaxial cylinders (§ = 0-5),
————— flow in a plane channel

1. T, = 80°C
2. T, = 50°C p T, = 50°C.
3. T, = 20°C

(b) Heat-transfer and resistance coefficients in flow
between permeable walls.

in an annulus (8 = 0-5);
————— between plane walls.

} at T, = 50°C; C;Re; P = 0.
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If. as it is done above, the dissipation function follows then from equation (9) that dp.éx =
in the energy equation is neglected, then the const

Nusselt number is independent of the viscosity. Making use of the dimensionless quantitics
Contrary to this, the resistance coefficient p = r . R, . P o (’p).
: 20Re R, R, pU " ox)
(Cp.Re)ymg = — Somm el :
expy; — 1 i 1 dp A v
I e —~—: - .. ; v = e
depends essentially on the viscosity change pU? or Sy oy
[Fig. 2(b)]: when the temperature gradient is UR, UR,
it : . ; all Re = ——; Pe =
positive, resistance at the wall will be smaller v a
than that in an isothermal flow. "
d .
Vi) = [ J ”] .QRe: v, =T,
3. AXISYMMETRICAL FLOW . Vel

the solutions of equations (9} to (11) may be

We turn to the flow in an annulus between ’ ' ‘ 140
written in the following form

two coaxial porous cylinders with radii R, and
R,. We shall assume that the internal cylinder u  exp y(n) — | {

is stationary and the external cylinder is [~ exp y(f) - |

I)
I+ - [exp wp)
moving with the velocity U. Let the velocity

0

components and temperature be functions of v A2 — exp f)
the co-ordinate r only. Then from the continuity | 7 exp(—=yhdy = 7"
equation ! , 7
dv v P
gty ~0 [eXp.v(n)fn exp (—yidn
it follows that 1
A n° — exp yir
b= where A = const. {8) e 5 py(y} (13)
Thus the flow is governed by the Navier— A
Stokes and energy equations of the form J : ///
Adu _ 10p 1d du S VI i
= — 28 4 2 [yt |
rdr  pox + rdr ( dr)’ ®) > E y
b .
lap A2 Adv
o D e, i 3
,(} a 2 dr (10) SR S W S W 01&— R J
AdT _ad( dT \
rdr  rdr dr : '
with boundary conditions e isids oa e T e
=0, T=7T, at r=R, | _o|_4 | P '
wu=U, T=T, at r=R, (12). [—"" |

Since ép/ér 1s independent of x, then _ ‘
Fie. 3. Radial pressure gradient in an annulus {# = 0-5; with

f)_ pr @p -0 porous walls {dp.éx = 0}
ox \er @r éx )
. T, == 50 C.

8O
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»u oy
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Consequently, dp:0x is independent of r. but it 3.
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Fig. 4.
{a) Longitudinal pressure gradient in an annulus which causes the flow to

separate (@ = 0.

{b} Heat-transfer and resistance coefficients in an annulus {# = 0-5).

1. T, = 80°C
2. T, =50°C 0 T = 50°C
317,=20C
[ T, = 80°C
T oac (T S0C GRe
4. Nu
T-T 1 — QPe
L nQP (14)
?-'2 - T1 - B €
*zz“Qz 1 2 dv, i5
12 dy 15)

Velocity and temperature distributions as
well as their deformation due to change of
viscosity in the flow field are completely
analogous quantitatively to those considered
above for the plane problem.

The pressure gradient which causes the flow
to separate is defined by the following expression

Py =20[1 - B* + 2exp y(B)

8
gfzexn(—y} dn]™? (16)

It is not difficult to calculate the resistance
and heat-transfer coefficients using equations
{13} and {14).

The curves in Fig. 3 allow assessment of the
effect of the temperature non-uniformity of the
flow on the transverse pressure gradient on the
internal cylinder. It should be noted that in
the case of an isothermal flow (v, = I},
dp/or|,-g, > 0 both for injection and suction.
Contrary to this, in a non-isothermal flow the
value and sign of the pressure gradient
dp/dr|,—g, depend not only on the value of the
radial velocity at the internal cylinder, but also
on its direction [see equation (15)].

The dependence of heat transfer and resis-
tance coefficients as well as longitudinal pressure
gradient at the external cylinder which causes
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the flow to separate, on the injection (or suction)
rate is the same as in a plane flow. The effect
of non-uniformity of the temperature field is
analogous in both cases.

Parameters of the problem of a flow with
axial symmetry include a new quantity: the
ratio of cylinder radii. This is a specific feature
of the flow of such a type.

Figure 4 shows that heat transfer, resistance
and longitudinal pressure gradient at the internal

L. YU. ARTYUKH and V. P. KASHKAROV

cylinder increase as the ratio f§ = R,/R, grows.
and when the ratio § is the same, these quantities
increase with the temperature ratio 7y/7,.
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Abstract—In the present paper, a study is made of liquid flow with variable viscosity in plane and annular

channels, liquid being injected or sucked through their porous surfaces. The solution is obtained of the

dynamic and thermal problems for the case in which the flow is caused by a longitudinal pressure gradient
and motion of one of the channel surfaces.

Résumé—On étudie I'écoulement d'un liquide 2 viscosité variable dans des conduites de section rec-

tangulaires et annulaires, le liquide étant injecté ou aspiré & travers leurs parois poreuses. La solution

des problémes dynamique et thermique est obtenue dans le cas oli I'écoulement est produit par un gradient
longitudinal de pression et le mouvement d’une des parois de la conduite.

Zussmmenfassung—In der vorliegenden Arbeit wird eine Untersuchung der Fliissigkeitsstromung mit

verdnderlicher Zahigkeit in ebenen und ringférmigen Kanilen durchgefiihrt, wobei Flitssigkeit durch

die pordsen Winde zu- oder abgefihrt wird. Die Losung fir die dynamischen und thermischen Probleme

gilt fiir den Fall, dass die Strémung von einem Druckgradienten in Liingsrichtung verursacht wird und
sich eine Kanalwand bewegt.



